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Theoretical observers for infinite dimensional
skew-symmetric systems

Deguenon Judicael and Alina Barbulescu

Abstract

The observer construction has a main importance in the control the-
ory and its applications for the systems of infinite dimension. Even if
the system’ state has an infinite dimension, its estimation is given using
some physical measures of finite dimensions. Considering unbounded
boundary observations operators and assuming that the exact observ-
ability property holds, we build some Luenberger like observers which
assure the exponential stability of the error system under some regular-
ity conditions.

1 Introduction

The observer construction has a main importance in the control theory and its
applications for the systems of infinite dimension. Even if the state of system
has an infinite dimension, its estimation is given using some physical measures
of finite dimesions.

Systems with bounded input and output operators have been studied in
[1], [3], [9]. As presented in [7] there are three different classes of systems: (a)
the Pritchard–Salamon class [12], [14]; (b) the Weiss class of regular systems
[2], and [18] and (c) the Salamon class of well-posed linear systems [15] and
[16].

The complexity of the situation in infinite dimension by comparison to that
in the finite one is summarized in [7] and appears because of the high gain
that can produce the instability of the error’ system.
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This part contain an overview of the basic notions necessary for the proof of
the main result of this article, while the main result of this paper, presented in
the next section, is related to the collocated feedback exponential stabilization
[5], [6], [17], [22], [23].

Assume that a linear infinite dimensional skew-adjoint observation system
is defined on the Hilbert space X and the observation space is another Hilbert
space O. Considering unbounded boundary observations operators and as-
suming that the exact observability property holds, we build some Luenberger
like observers which assure the exponential stability of the error system under
some regularity conditions.

Let X be a Banach space and I the identity on X.
Definition 1. [11] A Co semigroup of operators is a family of linear op-

erators from X to X, T (t)t≥0 satisfying:
i) T (0) = I,
ii) T (t)T (τ) = T (t+ τ), ∀ t,τ ≥ 0.
ii)limt→0+ T (t)φ = φ, ∀φ ∈ X.
The domain of definition of an operator A will be denoted by D(A).

Definition 2. [11] A generator of the semigroup T (t)t≥0 is an operator A
defined by the equation:

Aφ = lim
h→0+

T (h)φ− φ
h

,

where the limit is evaluated in terms of the norm on X and φ ∈ D(A) iff this
limit exists.

Theorem 1 [11] Let T (t)t≥0 be a Co semi-group on X, A its generator
and φ ∈ D(A). Then:
1) T (t)φ ∈ D(A) for all t ≥ 0 and d

dtT (t)φ = AT (t)φ = T (t)Aφ.
2) A is a closed operator, whose domain is dense on X.
3) There are two contants M ≥ 1 and ω ∈ R such that ‖ T (t) ‖≤Meωt,∀t ≥ 0.

Definition 3. [4] Let T (t)t≥0 be a Co semigroup on X, A its generator and

φ ∈ D(A). The number defined by ω0(A) = inf{ω/∃M, ‖T (t)‖ ≤ Meωt,∀t ≥
0} is called the exponentially increasing rate of of T (t). If ω < 0 we say that
the semigroup T (t)t≥0 is exponentially stable.

Definition 4. [11] A C0 group of bounded linear operators on X is a
family (T (t))t∈R of operators on X, such that:
i) T (0) = I.
ii) T (t)T (τ) = T (t+ τ), ∀ t,τ ∈ R.
ii) limt→0 T (t)φ = φ, ∀φ ∈ X.
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Theorem 2(Stone) [11] Let X be a Hilbert space. A is the generator of a
group of unity operators on X iff A is anti-adjoint.
Consider a distributed non - excited system [8]:

(
∑

)

{
φ̇(t) = Aφ(t), ∀t ≥ 0,
φ(0) = φ0.

Suppose that we collect q measures on the system, defined by the output
function:

(S)

{
y(t) = (y1(t), y2(t), . . . , yq(t))

= Cφ(t),

where C is an unbounded operator, whose domain, D(C) ⊂ X is invariant
with respect to the C0 semigroup T (t)t≥0 and y(.) ∈ L2(0, T ; Rq).

Definition 5(exact observability) [13] The system (
∑

) together with
(S) is exactly observable if there are constants τ0 > 0 and M > 0 such that:

M−1 ‖ φ0 ‖2X≤
∫ τ0

0

‖ CT (t)φ0 ‖2O dt ≤M ‖ φ0 ‖2X . (1)

Let X be the state space, U the input space, O the output space. Suppose
that X, U and O are Hilbert spaces, with their inner products. Consider, in
infinite dimension, the time invariant linear system described by [19]:

(
∏

)

 φ̇(t) = Aφ(t) +Bu(t),
y(t) = Cφ(t) +Du(t),
φ(0) = φ0.

φ0 is called the initial state of the system (
∏

).
φ(t) ∈ X is called the state of system (

∏
) at the moment t.

u(t) ∈ L2([0,∞), U) is the control and y(t) ∈ L2([0,∞), O) is the output.
A is generally an unbounded operator, generator of a C0 semigroup on X.

Let ρ(A) be the resolvent set of A and β ∈ ρ(A). We denote by X1, the
domain D(A), with the norm ‖ ϕ ‖1=‖ (βI−A)ϕ. The closure of X, with the
norm ‖ ϕ ‖−1=‖ (βI −A)−1ϕ ‖X will be denoted by X−1.

So X1 ⊂ X ⊂ X−1.
We consider the extension of A such that A ∈ L(X,X−1) and the extension

of the semigroup (T (t))t≥0 on X−1. For all β ∈ ρ(A), (βI − A)−1 can be
extended to the isometric isomorphism from X−1 to X.

We shall denote the operators and their extensions by the same symbols.
B is called control operator, B ∈ L(U,X−1).
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We asume that B is bounded if B ∈ L(U,X) and unbounded if B /∈
L(U,X).

C ∈ L(X1, O) is called output operator.
We denote by CΛ the Λ - extension of C, defined by:{

D(CΛ) =
{
x ∈ X, limλ→+∞ λC(λI −A)−1x exists

}
CΛx = limλ→+∞ λC(λI −A)−1x, ∀x ∈ D(CΛ).

(2)

Let λ0 ∈ R such that [λ0,∞) ⊂ ρ(A). We define the norm on D(CΛ):

‖ x ‖D(CΛ)=‖ x ‖X + sup
λ≥λ0

‖ λC(λI −A)−1x ‖O . (3)

Endowed with this norm, D(CΛ) is a Banach space.
CΛ ∈ L(D(CΛ), O), X1 ⊂ D(CΛ) ⊂ X with the continuous injection and

X1 is dense in D(CΛ).
D is the feedthrough operator of G and D ∈ L(U,O). G is the transfer

function of (
∏

).

If u = 0, (
∏

) is called open loop system and will be denoted by (
∏0

).
Assume that u 6= 0 in (

∏
).

Definition 6.[20] B is called an admissible control operator for the semi-
group T (t)t≥0, if there is τ > 0 such that Φτu ∈ X, ∀u ∈ L2([0,∞), U), where
Φτu is defined by

Φτu =

∫ τ

0

T (τ − σ)Bu(σ) dσ.

Proposition 1.[20] IfB is an admissible operator for the semigroup (T (t))t≥0,
then there is k ≥ 0, such that for any s ∈ C0, big enough:

‖ (sI −A)−1B ‖L(U,X)≤ k/
√
<e(s),

where <e(s) is the real part of s.

Definition 7. [20] The system (
∏

) or the quadruple (A,B,C,D) is
(Weiss) regular if:
i) The couples (A,C) and (A,B) are admissible.
ii) Im(λI −A)−1B ⊂ D(CΛ), ∀λ ∈ ρ(A).
iii) The transfer function CΛ(sI − A)−1B is analytic and uniformly bounded
on a certain Cα.
iv) The input-output transfer function G(s) = CΛ(sI−A)−1B+D (s ∈ Cα) is
regular, that is ∀v ∈ U,∃ limR3λ→+∞G(λ)v = Dv, where D is the feedthrough
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v u y

Figure 1: Closed loop system
∏K

operator of G.
In other words:

lim
R3λ→+∞

CΛ(λI −A)−1Bv = 0, v ∈ U.

Theorem 3 [20] If (
∏

) = (A,B,C,D) is a linear regular system, then, for
all φ0 ∈ X and for all u ∈ L2

loc([0,∞);U), the system: φ̇(t) = Aφ(t) +Bu(t)
y(t) = CΛφ(t) +Du(t)
φ(0) = φ0,

admits an unique strong solution φ(t) = T (t)φ0 +
∫ t

0
T (t− τ)Bu(τ)dτ satisfy-

ing φ(0) = φ0. Moreover, if u and y are continuous to the right for all t ≥ 0,
then φ(t) ∈ D(CΛ).

Assume that the system (
∏

) is in a loop, with the feedback law: u(t) =
Ky(t) + v(t) where K is the output feedback operator, i.e. K ∈ L(O,U) and
v(.) is a new input (Fig.1).

Definition 8 [19] Let G̃(s) be a well - posed transfer function and K ∈
L(O,U). K is an admissible output feedback operator for G̃(s) if I −KG̃(·)
is invertible on H∞∞ (L(U)), i.e. there is α ∈ R such that I −KG̃(s) is invert-

ible for all s ∈ Cα and the inverse (I −KG̃(s))−1 is analytic and uniformly
bounded on Cα.

Proposition 2 [19] Assume that the transferG is regular and the feedthrough
operator D ∈ L(U,O) satisfies: limσ→+∞ supδ∈R ‖G(σ + iδ)−D‖ = 0. Then,
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for all K ∈ L(O,U), K is an admissible feedback operator iff I − DK is in-
vertible.

Assume that the open loop system (
∏

) is regular and K is an admissi-

ble output feedback operator such that the closed loop system (
∏K

) is also

regular. Then, the closed loop system (
∏K

) is described by the system:

(
∏K

) :

 φ̇(t) = AKφ(t) +BKu(t),
y(t) = CKφ(t) +DKu(t),
φ(0) = φ0,

where: D(CKΛ ) = D(CΛ), CKΛ = (I −DK)−1CΛ, B
K = B(I −DK)−1, D(AK) =

{
x ∈ D(CΛ), (A+BK(I −DK)−1CΛ)x ∈ X

}
,

AKx = (A+BK(I −DK)−1CΛ)x, ∀x ∈ D(AK),
CKx = (I −DK)−1CΛx, ∀x ∈ D(AK).

(4)

Theorem 4 [19] If (
∏

) is regular, K admissible, I −DK invertible, then

(
∏K

) is regular and

GK(s) = (I −G(s)K)−1G(s), DK = (I −DK)−1D. (5)

Remark 1 [19], [21] If (
∏

) is observable and K is admissible, then (
∏K

)
is observable.

2 Main Result

In this chapter we work in the general theoretical frame. We consider the
linear autonomous system, observed on the state space X, supposed to be a
Hilbert space:  φ̇(t) = Aφ(t)

y(t) = Cφ(t),
φ(0) = φ0

(6)

where A is the generator of a C0 group of unity operators on X, C : X1 → O
is a linear bounded operator, X1 being the Banach space D(A), endowed with
the norm: ‖ ϕ ‖X1

=‖ (βI −A)ϕ ‖X , with β ∈ ρ(A) ∩ ρ(−A).
The Hilbert spaces X and O are identified respectively with their topo-

logical duals, X ′ and O′. If X−1 is the topological dual of X1, the duality
product on X1×X−1, denoted by < ., . >X1×X−1 , is defined as the continuous
extension of the inner product on X:

< ϕ, f >X1×X−1
=< ϕ, f >X , ∀ϕ ∈ X1, f ∈ X.
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We also have the following continuous and dense injections: X1 ⊂ X ⊂ X−1.
The dual space X−1 is also a Hilbert space with the induced norm:

‖ ϕ ‖X−1
=‖ (βI +A)−1ϕ ‖X .

Moreover, (βI − A) ∈ L(X1, X) and (βI + A) ∈ L(X,X−1) are isometric
isomorphisms.

The group (etA)t∈R generated by A can be extended to a C0 semigroup
on X−1. If C∗ denotes the adjoint operator of C, then C∗ ∈ L(O,X−1).

We also suppose that (A,C) is exactly observable.
The observer proposed by us is described by the system:

ψ̇(t) = [A− κC∗CΛ]ψ(t) + κC∗y(t), κ > 0, ψ(0) = ψ0. (7)

Let denote by Aκ = A− κ.C∗CΛ and ε(t) = ψ(t)− φ(t).
Consider that the estimation error satisfies the evolution equation:

ε̇(t) = Aκε(t) , κ > 0, ε(0) = ε0. (8)

and the auxiliary system:

Ω̇(t) = AΩ(t) + C∗v(t), z(t) = CΛΩ(t). (9)

Definition 9 The observer (7) is said to be (exponentially) convergent or
stable if (9) is regular and (8) is exponentially stable.

In the following we shall prove the main result:

Theorem 5 Let A be a generator of a C0 group of unity operators on
X. If (A,C∗, C) is regular and (A,C) is exactly observable, then the observer
(7) has an unique solution on C([0,∞), X) for all (φ0, ψ0) ∈ X × X and its
state is exponentially convergent on X to the state of the system (6), for all
0 < κ < 1/Kmax. The observer (7) is exponentially instable if κ > 1/Kmin,
where:

Kmax = sup
|CΛf |O=1

lim β ∈ R+

β → +∞
β ‖ (βI −A)−1C∗CΛf ‖2X , (10)

Kmin = inf
|CΛf |O=1

lim β ∈ R+

β → +∞
β ‖ (βI −A)−1C∗CΛf ‖2X . (11)

Proof. For simplicity, we consider X as a real Hilbert space. The same results
are true if X is a complex Hilbert space, after a slight modification of the
proof.
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Step I. We prove that the observer (7) admits an unique solution on
C([0,∞), X).

By hypothesis, (A,C∗, C) is regular (with the null feedthrough operator).
Let G(s) be the tranfer function of (A,C∗, CΛ) representing the auxiliary

system (9).
By regularity, G(s) = CΛ(sI − A)−1C∗ ∈ H∞(Cα, L(O)) for a certain

α > 0 and

lim
s→+∞

G(s)v = 0,∀v ∈ O. (12)

It also results that the feedthrough operator is null for the auxiliary system
(9).

Definition 10 Let G̃(s) : U → U be a transfer function such that G̃ ∈
H∞(C0). G̃(s) is said to be a real positive transfer function if G̃(s)+G̃(s)∗ ≥ 0
for all s ∈ C0.

Assertion 1 [24] The transfer function of the system (9) is real positive.

Assertion 2 If G̃(s) is a real positive transfer function, then, for each

κ > 0, the output feedback operator K = −κI is admisible for G̃(s).

Proof of Assertion 2 It is known that [21]: if cI + G̃(s) is a real positive
transfer function for a certain c ≥ 0, then, for any k ∈ (0, 1/c), the operator

K = −kI is admissible for G̃(s).

In particular, for c = 0 we obtain that K = −kI is admissible for G̃(s),
∀ k > 0.

The assertion 1 is proved.

From Assertion 2 it results that any output feedback operator K = −κI,
κ > 0, is admissible.

From Theorem 4 it results that the closed loop system:{
Ω̇(t) = [A− κC∗CΛ]Ω(t) + κξ(t) , κ > 0,
z(t) = CΛΩ(t).

(13)

obtained by the feedback v(t) = Kz(t) + κξ(t) is also regular, with the null
feedthrough.

If ξ(t) = y(t), the closed loop system (13) is the observer (7). From Theo-
rem 3 and (4), it results that Aκ is the generator of a C0 closed loop semigroup
and is defined by:{

D(Aκ) = {ϕ ∈ D(CΛ)/(A− κC∗CΛ)ϕ ∈ X}
Aκϕ = (A− κC∗CΛ)ϕ, ∀ϕ ∈ D(Aκ)

(14)
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Moreover, the system (7) is regular, and ∀(φ0, ψ0) ∈ X×X, y ∈ L2
loc([0,∞), O),

ψ ∈ C([0,∞), X), with ψ(t) = etAκψ0 + κ
∫ t

0
e(t−τ)AκC∗CΛe

τAφ0 dτ.
The first step is completed.

Step II. The error estimation.

Assertion 3 For any ε(0) ∈ D(Aκ), the solution of the system satisfies
the equalities:

1

2

d

dt
‖ ε(t) ‖2X = < Aκε(t), ε(t) >X (15)

= −κ ‖ CΛε(t) ‖2O + lim
β→+∞

κ2β ‖ R(β,A)C∗CΛε ‖2X .(16)

Proof of Assertion 3 The identity (15) can be easily obtained.
To prove (16), remember that ∀λ ∈ ρ(A), R(λ,A) is an isomorphism from

X to X−1; R(λ,A) commutes with A on D(A) and:

lim
λ→∞

λR(λ,A)x = x, lim
λ→∞

λR(λ,−A)x = x ∀x ∈ X. (17)

Let fix β ∈ ρ(A) ∩R+. Then:

ε+R(β,A)κC∗CΛε = R(β,A) [βε−Aκε] ∈ D(A), ∀ε ∈ D(Aκ)⇔

Aκε = A [ε+R(β,A)κC∗CΛε]− βR(β,A)κC∗CΛε, ∀ε ∈ D(Aκ).

Passing to the inner product on X, we obtain:

〈Aκε, ε〉X = 〈A [ε+R(β,A)κC∗CΛε] , ε〉X − 〈βR(β,A)κC∗CΛε, ε〉X =

= 〈A [ε+R(β,A)κC∗CΛε] , [ε+R(β,A)κC∗CΛε]−R(β,A)κC∗CΛε〉X −
−〈βR(β,A)κC∗CΛε, ε〉X =

= 〈A [ε+R(β,A)κC∗CΛε] , [ε+R(β,A)κC∗CΛε]〉X −
−〈A [ε+R(β,A)κC∗CΛε) , R(β,A)κC∗CΛε〉X − 〈βR(β,A)κC∗CΛε, ε〉X
Since A is anti - adjoint, the first term in the right - hand side is null, so

〈Aκε, ε〉X = −〈A [ε+R(β,A)κC∗CΛε] , R(β,A)κC∗CΛε〉X
−〈βR(β,A)κC∗CΛε, ε〉X . (18)

By (17), and since A is anti-adjoint on X we obtain,

−〈A [ε+R(β,A)κC∗CΛε] , R(β,A)κC∗CΛε〉X =

= − lim
λ→+∞

〈A [ε+R(β,A)κC∗CΛε] , λR(λ,A)R(β,A)κC∗CΛε〉X =

= lim
λ→+∞

〈[ε+R(β,A)κC∗CΛε] ,−λAR(λ,A)R(β,A)κC∗CΛε〉X . (19)
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A commutes with R(λ,A). Therefore:

−λAR(λ,A)R(β,A)κC∗CΛε = −λR(λ,A) [AR(β,A)]κC∗CΛε.

From the identity (βI −A)R(β,A) = I, it results:

AR(β,A) = −I + βR(β,A). (20)

From (20), (19) we deduce that:

−〈A [ε+R(β,A)κC∗CΛε] ,−R(β,A)κC∗CΛε〉X
= lim

λ→+∞
〈[ε+R(β,A)κC∗CΛε] ,−λR(λ,A)κC∗CΛε

+βR(β,A)λR(λ,A)κC∗CΛε〉X . (21)

Also,

−〈βR(β,A)κC∗CΛε, ε〉X = − lim
λ→+∞

〈βR(β,A)λR(λ,A)κC∗CΛε, ε〉X . (22)

Replacing (22), (21) in (18), we obtain

〈Aκε, ε〉X = lim
λ→+∞

〈ε,−λR(λ,A)κC∗CΛε〉X +

+ lim
λ→+∞

〈R(β,A)κC∗CΛε,−λR(λ,A)κC∗CΛε〉X +

+ lim
λ→+∞

〈R(β,A)κC∗CΛε, βR(β,A)λR(λ,A)κC∗CΛε〉X .(23)

The limits in (23) exist and are finite. Indeed,

lim
λ→+∞

〈ε,−λR(λ,A)κC∗CΛε〉X

= −κ lim
λ→+∞

〈CλR(λ,−A)ε, CΛε〉O = −κ ‖ CΛε ‖2O, (24)

lim
λ→+∞

〈R(β,A)κC∗CΛε,−λR(λ,A)κC∗CΛε〉X

= −κ2 lim
λ→+∞

〈CλR(λ,−A)R(β,A)C∗CΛε, CΛε〉O

= −κ2 〈G(β)CΛε, CΛε〉O , (25)

lim
λ→+∞

〈R(β,A)κC∗CΛε, βR(β,A)λR(λ,A)κC∗CΛε〉X

= κ2β ‖ R(β,A)C∗CΛε ‖2X . (26)
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From (23)–(26) we obtain the following identity, ∀ε ∈ D(Aκ):

〈Aκε, ε〉X = −κ ‖ CΛε ‖2O −κ2 〈G(β)CΛε, CΛε〉O + κ2β ‖ R(β,A)C∗CΛε ‖2X .
(27)

Since (27) is true for all β ∈ ρ(A) ∩R+, passing to the limit when β → +∞,
and using (12), (27) can be written as:

〈Aκε, ε〉X = −κ ‖ CΛε ‖2O + lim
β→+∞

κ2β ‖ R(β,A)C∗CΛε ‖2X . (28)

The proof of Assertion 3 is complete.

Assertion 4 The errors are exponentially stable if 0 < κ < 1/Kmax.

Proof of Assertion 4 From Proposition 1,
√
β ‖ R(β,A)C∗CΛε ‖L(O,X) is

uniformly bounded for all β > 0. So, the Kmax is well defined. On the other
hand, by (10):

lim
β→+∞

κ2β ‖ R(β,A)C∗CΛε ‖2X≤ κ2Kmax ‖ CΛε ‖2O . (29)

From (29) and (16), we obtain:

1

2

d

dt
‖ ε(t) ‖2X≤ −κ(1− κKmax) ‖ CΛε ‖2O ∀ε ∈ D(Aκ)⇒

‖ ε(t) ‖2X≤‖ ε0 ‖2X −2κ(1− κKmax)

∫ t

0

‖ CΛε(τ) ‖2O dτ,∀t ≥ 0. (30)

Since the open loop system is exactly observable, the system (8) is also exactly
observable, from Remark 1. By (1), it results that there are τ̃0 > 0 and m̃ > 0
such that: ∫ τ̃0

0

‖ CΛε(t) ‖2O dt ≥ m̃

2κ
‖ ε0 ‖2X . (31)

From (31) and (30), we obtain:

‖ ε(τ̃0) ‖2X≤ [1− m̃(1− κKmax)] ‖ ε0 ‖2X⇒

‖ eτ0A
κ

ε0 ‖2X≤ (1− ˜̃m) ‖ ε0 ‖2X ,∀ε0 ∈ D(Aκ), (32)

where ˜̃m = m̃(1− κKmax).
From the semigroup properties it results that:

‖ ε(t) ‖2X≤ me−rt,

where
‖ ε0 ‖2X ,m = sup

t∈[0,τ̃0]

‖ etA
κ

‖, r = τ̃−1
0 ln[(1− ˜̃m)−1].
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So, the error estimation exponentially tends to 0 on X for all 0 < κ < 1/Kmax.
The proof of Assertion 4 is complete.

Assertion 5 The errors are exponentially unstable if κ > 1/Kmin.

Proof of Assertion 5. From (11) it results that:

lim
β→+∞

κ2β ‖ R(β,A)C∗CΛε ‖2X≥ κ2Kmin ‖ CΛε ‖2O .

By (16) we obtain:

1

2

d

dt
‖ ε(t) ‖2X≥ κ(κKmin − 1) ‖ CΛε(t) ‖2O . (33)

Using (31) on (33), it results that:

‖ ε(τ̃0) ‖2X≥
{

1 + m̃(κKmin − 1)
}
‖ ε0 ‖2X ,

so

‖ ε(τ̃0) ‖2X≥
(

1 + ˜̃m′) ‖ ε0 ‖2X , ˜̃m′ = m̃(κKmin − 1). (34)

˜̃m′ > 0 if κ > 1/Kmin. If t ≥ 0, then t = nτ̃0 + θ, where θ ∈ [0, τ̃0). Using
(34) and the semi - group property, we find:

‖ etA
κ

ε0 ‖2X≥
(

1 + ˜̃m′)n ‖ eθAκε0 ‖2X . (35)

Using (34), it results that:(
1 + ˜̃m′) ‖ ε0 ‖2X≤‖ eτ̃0A

κ

ε0 ‖2X≤ K̃ ‖ eθA
κ

ε0 ‖2X ,

where K̃ = supt∈[0,τ̃0]

∣∣etAκ∣∣2
L(X)

. So,

‖ eθA
κ

ε0 ‖2X≥ (1 + ˜̃m′)/K̃ ‖ ε0 ‖2X

and from (35):

‖ etA
κ

ε0 ‖2X≥ K̃−1
(

1 + ˜̃m′)n+1

‖ ε0 ‖2X≥ K̃−1et ln(1+ ˜̃m′ )/τ̃0 ‖ ε0 ‖2X .

We conclude that ‖ etAκε0 ‖X is exponentially increasing to infinity when
t→∞.
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Remark 2 The upper limit and Kmax are finite, since (A,C∗) is a well -
posed control system. The Kmin is also finite.

If f ∈ D(A), the lower and upper limits are equal (see (15)). In this case,
the conclusion of Theorem 5 remains true, replacing Kmax and Kmin by:

Kmax = κ−1 + κ−2 sup
f∈D(Aκ),|CΛf |O=1

〈Aκf, f〉 ,

Kmin = κ−1 + κ−2 inf
f∈D(Aκ),|CΛf |O=1

〈Aκf, f〉 .

Note that Kmax and Kmin don’ t depend on κ (see the proof of (15)).

Remark 3 Generally, it is not true that Kmax = Kmin = 0. To prove this
assertion, we consider an example from [21]. Consider the system described
by the following equations of partial derivatives on X = L2(0, 1): Wt = Wx

W (0, t) = W (1, t)
W (x, 0) = W 0(x)

(36)

with the observation
y(t) = W (0, t). (37)

The operator A = ∂x with its corresponding domain of definition is the
generator of a C0 semigroup on X. The observation space is O = R. The
observator of the observation C : X1 → O is such that Cf = f(0). It
can be prooved that (A,C) is admissible and exactly observable. Moreover,
(A,C∗, C) is regular. By Theorem 5, the Luenberger observer proposed here
is governed by the following equation of partial derivatives: Ωt = Ωx

Ω(1, t) = Ω(0, t)− κ [Ω(t, 0)−W (0, t)]
Ω(x, 0) = Ω0(x).

(38)

It is not difficult to prove that Kmax = Kmin = 1/2. So, the error of the
Luenberger observer, ε = Ω − W , converges to zero if 0 < κ < 2 and it
diverges if κ > 2.

3 Conclusion

In this article we built some observers and we found the limits for its expo-
nentially stability, respectively instability. I was also proved that that limits
can not be equal to zero, in concordance with the results of [9].
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